Сварка полуавтоматом нержавейки в среде углекислого газа: основные особенности технологического процесса
Нержавеющая сталь из-за содержащихся в ней химических элементов (например, хрома) слабо подвержена коррозийному воздействию окружающей среды. Однако такие свойства данного металла требуют тщательного подхода к процессу его сварки, что выражается в тонкостях подбора присадочных материалов, с помощью которых производится сварочный процесс.
Состав и особенности сварочных смесей
Существует несколько причин, по которым при сварке используют не только чистые газы, но и их смеси в определенных пропорциях.
Немаловажными являются экономические мотивы. Чистый гелий стоит дорого, и его используют при сварке только самых ответственных соединений. Аргон в производстве обходится дешевле, поэтому его используют для разбавления гелия. Это позволяет снижать себестоимость сварочных операций, не поступаясь качеством шва. В атмосфере аргона сваривают нержавеющие и высоколегированные сплавы, большинство цветных и редкоземельных металлов.
Для полуавтоматической сварки обычных конструкционных сталей применяют углекислый газ, самый недорогой из всех.
Кроме экономических резонов, важную роль играют физико-химические особенности свариваемых материалов и газов. Аргон облегчает поджиг дуги при работе вольфрамовым электродом, улучшает стабильность ее горения. Но есть у него и недостаток — он снижает отдачу энергии при соединении заготовок большой толщины из материалов с высокой теплопроводностью. В этих случаях приходится использовать гелий, несмотря на его худшие характеристики при розжиге и подержании стабильности дуги.
Смешивание газов позволяет сочетать их сильные стороны и компенсировать слабые. В результате газовые смеси определенных пропорций для определенных сочетаний материалов и сварочных режимов оказываются технически более эффективными, чем чистые газы. Наблюдается и экономическая выгода.
Выбираем сварочный защитный газ
Кислород отрицательным образом влияет на сварочную ванну, что может снизить стойкость шва к коррозийным процессам. Кроме этого, в результате уменьшатся его прочностные качества.
Как следствие на шве могут появиться поры. Благодаря потоку газа сварочная ванна имеет защитную оболочку, которая защищает ее от опасного влияния окружающей среды. Более того, защитный газ обеспечивает сварному шву защиту от влаги и окисления.
Качество сварного шва во многом зависит от защитного газа. В особенности это касается таких видов сварки, как MAG — Metal Active Gas, MIG — Metal Inert Gas и TIG — Tungsten Inert Gas.
TIG – сварка в среде защитных газов. Возникновение, виды, принцип работы, оборудование и безопасность при выполнении работ
TIG, или WIG – это наименование одного и того же вида сварочных работ – сварки W-электродом в защитной среде, только на разных языках. На немецком языке WIG переводится как Wolfram-Inertgasschweißen. TIG (tungsten – вольфрам) – в англоязычных странах.
Для производства качественного сварного шва требуется удаление водорода, кислорода и азота из расплава. Так удается избежать образования пузырьков или пор. Эту задачу и решила WIG-сварка.
Как быстро освоить и сваривать полуавтоматом нержавейку
Сварка нержавейки полуавтоматическим аппаратом – распространенный метод создания неразъемных соединений. Ответственный процесс не из простых и для получения хорошего результата, лучше, чтобы его проводил квалифицированный специалист.
Составы газовых смесей для сварки
Технологические особенности сварки металлов с привлечением инертных газов предусматривают использование специальных газовых смесей. Благодаря им качество сварочного шва существенно возрастает. Газовые смеси для сварки изготавливаются на основе таких известных составляющих, как гелий, кислород, аргон и углекислота.
Все что нужно знать о газах применяемые для сварки от А до Я
Хотите узнать какой газ используется для сварки полуавтоматом mig или mag, а может вам необходимо разобраться с газовой сваркой и с тем какие газы применяются. В статье мы подробно расскажем о том, где и какие газы используют и как их выбрать.
Какие газы смешивают
Для создания смесей используют:
- аргон (Ar);
- гелий (He);
- кислород (O2);
- водород (H2);
- углекислый газ (CO2).
Для создания смесей используют аргон, гелий, углекислый газ, водород.
Для полуавтоматической сварки MIG-MAG используются различные сочетания перечисленных выше газов. Наименее популярны смеси с добавкой кислорода. Он вызывает угар металла с образованием дыма. Но присадка кислорода позволяет сваривать заготовки без предварительной очистки кромок от ржавчины или следов масла.
Классификация TIG
По способу зажигания дуги:
- Касанием об изделие.
- На выводных планках.
- С применением осциллятора.
- При ламинарном потоке.
- В газовой камере.
По используемому инертному газу:
- Аргон применяется чаще других газов, потому что он тяжелее воздуха и не образует взрывчатых смесей. Первый сорт используется для сварки стали и алюминия. Высший применяется для сплавов, для цветных, редких и активных металлов.
- Гелий – легче воздуха. Два сорта: технический и особой чистоты. Более редкий и дорогой. В его среде электрическая дуга в 1,5-2 раза выделяет больше энергии.
- Смесь аргона и гелия в пропорциях до 40% аргона и до 65% гелия. Достоинства: стабильность дуги и высокая степень проплавления.
- Азот используется только для сварки меди. Выпускается четырех сортов.
По техническим признакам.
- Погруженной дугой.
- Проникающей дугой.
- Несколькими W-электродами.
Материал, который не ржавеет
К низкоуглеродной стали добавляют различные легирующие добавки: хром – не менее12%, никель и др. Хром при взаимодействии с кислородом из воздуха, образует на поверхности очень тонкую окисную пленку, которая препятствует процессу ржавления и действию химически агрессивной среды. Поверхностный антикоррозионный слой восстанавливается при повреждении. Нержавеющая сталь имеет свои особенности:
- Малая теплопроводность препятствует отводу тепла от места сварки. В результате происходит перегрев и прожог металла, выгорание легирующих элементов.
- Низкая температура плавления снижает энергетические затраты.
- Низкая электропроводимость ведет к снижению напряжения на металле заготовки, что является причиной перегрева и образования прожогов, особенно на тонких деталях
- Большое тепловое расширение деформирует детали при нагревании.
Материал с такими свойствами трудно поддается сварке. Есть несколько способов, один из которых, сварка на полуавтоматическом аппарате. Как варить полуавтоматом нержавейку, начинающему можно ознакомиться на сайте mrmetall.ru.
Свойства и назначение
Сварочная смесь, создающая защитное облако над ванной расплава способна оказывать на процесс сварки как положительное, так и отрицательное воздействие. Инертные газы ведут себя по-разному:
- Аргон за счет ионизации воздуха поддерживает дугу и обеспечивает качественный перенос металла. При работе с толстостенными заготовками, прокатом из металлов, имеющих высокую теплопроводность, аргон, характеризующийся слабой отдачей энергии, малоэффективен.
- Гелий с этой точки зрения предпочтительнее, но меньше влияет на стабильность горения дуги и не улучшает перенос металла присадки на поверхность заготовок.
- Углекислый газ обеспечивает хорошую защиту за счет высокой плотности, снижает разбрызгивание жидкого металла.
Каждый отдельный газ обладает уникальными свойствами, в смеси они нивелируют отрицательное воздействие отдельных компонентов, усиливают положительное влияние. Составы подбирались методом проб и ошибок с целью повышения качества швов и скорости сварки.
В смеси защитные газы намного эффективнее защищают ванну расплава, снижают вероятность образования дефектов.
Что лучше – углекислота или сварочная смесь?
Углекислота — это единственное вещество, которое применяется в сварочном процессе без добавления инертных газов. Кроме того, это еще и один из самых недорогих вариантов, поэтому пользуется большой популярностью, если материальные затраты отыгрывают приоритетную роль. Углекислота является самым распространенным из химически активных элементов, которые используются в МАГ методе. Она обеспечивает достаточно большой тепловой эффект, что важно при обработке металлов большой толщины. Но при этом дуга является не слишком стабильной, что приводит к частому образованию брызг. Поэтому обычно его применение в чистом виде ограничивается работой на короткой дуге. Если Вас интересуют вопросы заправки углекислотой, то советуем прочитать статью углекислота: где заправить — вопрос не праздный.
Баллон с углекислотой для сварного аппарата
Учитывая то, что любой чистый технический газ имеет как свои преимущества, так и недостатки, использование защитных сварочных смесей в правильной пропорции зачастую делает сварку более эффективной, повышает производительность и позволяет добиться более качественных швов, благодаря следующим особенностям:
- снижение количества брызг;
- увеличение скорости наплавления металла;
- повышение пластичности и плотности шва;
- уменьшение задымленности;
- увеличение стабильности дуги.
Перед тем как определиться, что лучше – сварочная смесь или углекислота, сварщики обычно сопоставляют сложность работ, необходимое качество и целесообразность материальных затрат, после чего делают свой выбор.
Разновидности
Взятые в установленном техническими нормативами соотношении, перечисленные выше составляющие могут образовывать следующие смеси газов:
- аргон плюс углекислота;
- аргон в соединении с гелием и кислородом (водородом);
- соединение углекислоты и кислорода.
Некоторые из этих комбинаций оптимально подходят для полуавтомата, в конструкции которого уже предусмотрена возможность их эффективного использования. Однако к рассмотрению этого вопроса удобнее будет перейти после более подробного ознакомления с основными сварочными смесями.
Аргон и углекислый газ
Подготовленная в определённой пропорции эта смесь газов наиболее продуктивна при работе с углеродистыми и низколегированными сталями. При сравнении эффективности данной комбинации с аналогичными показателями сварки на чистых газах обнаруживается, что этот сварочный состав облегчает струйный перенос вещества электрода.
Кроме того, швы на готовом изделии, в отличие от сваривания на чистой углекислоте, получаются более ровными и пластичными. При работе с указанной смесью газов заметно снижается возможность образования пор.
Аргон в сочетании с кислородом
Аргонокислородная смесь очень часто требуется для эффективного сплавления легированных и низколегированных сталей. Небольшая добавка кислорода в рабочую комбинацию позволяет не только исключить образование пор, но и заметно расширить возможности сварочных процедур.
Прежде всего, это касается изменения пределов регулировки токов, а также применения более широкого набора разновидностей сварочной проволоки. Естественно, что качество образуемого при этом сварочного шва заметно возрастает, вследствие чего смеси этого состава пользуются повышенным спросом.
Углекислота и кислород
Применение этой сварочной смеси газов позволяет получить требуемый положительный эффект, проявляющийся в следующем:
- наблюдающееся во время сварки разбрызгивание металла ощутимо снижается;
- вследствие этого улучшается качество формируемого шва;
- повышается температура в рабочей зоне, что определённым образом влияет на эффективность проводимых работ (их производительность резко возрастает).
Однако у этого сварочного реагента имеется один существенный недостаток, связанный с повышенным окислением металла в зоне сварки. Как следствие, заметно ухудшаются механические параметры формируемого соединения. К тому же при данном соединении образуется вредный для человека угарный газ.
Необходимое оборудование
Использование защитных газов является необходимым условием для получения максимально качественных сварных соединений с минимальным количеством пор в сварном шве, а также с минимальным количеством образуемого шлака.
Необходимость использования защитного газа накладывает определенные особенности на перечень оборудования, которое должно быть использовано в сварочном процессе. Все такое оборудование делится на две большие группы:
- Оборудование, используемое для собственно осуществления сварочного процесса.
- Оборудование для соблюдения техники безопасности при выполнении сварочных работ.
В первую группу входят:
- источник сварочного тока в виде полуавтоматического сварочного аппарата;
- газовый баллон или резервуар иного типа, из которого в процессе сварки подается используемый в данной технологии защитный газ;
- сварочные кабели для подачи тока на свариваемые детали;
- шланги для подачи защитного газа;
- газовая горелка;
- машинка для подачи сварочной проволоки.
В большинстве современных сварочных аппаратов, позволяющие реализовать принцип сварки с использованием защитного газа, сварочная горелка и «держак», через который подается сварочная проволока, объединены в одно устройство, что позволяет сократить объем попадающего в сварочную зону воздуха (это минимизирует количество образуемого шлака и сокращает риск возникновения микротрещин при остывании металла), а также уменьшить количество кабелей и шлангов (кабель для подачи тока и шланг для защитного газа находятся в одной оплетке, что делает их использование более удобным для сварщика).
На машинке для подачи проволоки у сварщика есть возможность установить индивидуальную для него скорость подачи проволоки с целью минимизации разбрызгивания металла в процессе сварки.
Примерная стоимость сварочных полуавтоматов с механизмом подачи проволоки
Во вторую группу входят:
- защитный костюм. Главное требование, которое предъявляется к нему – сокращение риска получения ожогов сварщиком от летящих капель расплавленного металла, а также воспламенения одежды вследствие попадания таковых на ткань (достигается за счет специальной огнезащитной пропитки ткани);
- маска. Ее использование необходимо для защиты лица и, в первую очередь, глаз сварщика от воздействия экстремально высоких температур, в результате которых может наступить ожог кожных покровов и глаз работника;
- защитные перчатки (краги). Они должны отвечать двум главным требованиям – исключение ожогов кожных покровов от воздействия экстремально высоких температур от разогретого металла в виде микрокапель, а также защита от возможного поражения электрическим током в результате касания свариваемых деталей или ввиду вероятной неисправности сварочного оборудования.
Составы
В сварном деле используется много смесей газов в разных сочетаниях и пропорциях. Наиболее популярными являются следующие сварочные газовые смеси:
Аргон и углекислый газ
Смесь нашла свое применение при работе с низкоуглеродистыми сплавами. Она позволяет снизить образование пор в шовном материале, повышая таким образом его плотность и прочность. Кроме того, снижается расход сварочных материалов ввиду меньшего разбрызгивания расплава.
Если довести долю углекислого газа до 20%, то в такой смеси можно успешно варить заготовки большой толщины, невзирая на загрязнения на их поверхности.
Аргон в сочетании с кислородом
Этот состав используется при сварке высоколегированных и кислотоустойчивых сплавов способами MAG и TIG. Он стабилизирует горение электродуги, увеличивает глубину проплава и способствует образованию гладкой поверхности шва.
Углекислота и кислород
Состав используется для сваривания конструкционных низколегированных сплавов с низким содержанием углерода. Доля кислорода достигает 20-40%. Углекислота защищает сварную зону. Кислород нейтрализует негативное влияние водорода, способствует росту глубины проплава и предотвращает прилипание к заготовкам брызг расплава. С другой стороны, кислород снижает коррозионную стойкость шва.
Государственные стандарты
Для организации сварочных работ есть достаточно много государственных стандартов, которые дают пояснения и требования к работам и определяют способы безопасного ведения сварки.
Вот наиболее подходящие документы, характеризующие сварку в среде защитных газов:
- ГОСТ 19521-74;
- ГОСТ 2601-84;
- ГОСТ 14771-76;
- ГОСТ 23518-79;
- ГОСТ 14806-80;
- ГОСТ 27580-88.
Употребляемые расходники
Для работы с полуавтоматом потребуются основные материалы – проволока, газ или смесь газов.
Электрод заменяет проволока, которая с заданной скоростью автоматом продвигается к рабочей зоне. От грамотного выбора соответствующих материалов и настроек аппарата зависит качественное исполнение соединения.
Особенности аргоновых и углекислотных соединений
Перед тем как определиться, какой газ использовать в смеси, надо рассмотреть особенности применения каждого их них.
Согласно ТУ 2114-001-99210100-09 все перечисленные выше составы могут формироваться в самых различных пропорциях, отличающихся процентным содержанием каждой из составляющих. В подавляющем большинстве таких пропорций аргон или кислород содержится в объёмах, составляющих основную массу вещества (от 88 до 98%). Дополняющие их добавки (углекислый газ, в частности) редко превышают в объёмном исчислении 5-15 %.
Аргон в пропорциональном соотношении с гелием чаще всего применяется с целью обработки цветных металлов и их производных. Основные типы заготовок, для обработки которых используется аргонодуговая сварка – это медные, алюминиевые, никелевые, а также хромоникелевые сплавы.
Сварочные смеси из сочетания аргона с углекислым газом нередко применяются с целью подогрева металла перед сваркой или постепенного его охлаждения по окончании работ. Как правило, такая процедура организуется в случаях крайней необходимости.
Этот газообразный состав достаточно взрывоопасен, так что работа в среде СО2 требует от оператора соблюдения мер безопасности при его подготовке и использовании.
Особого внимания требует процесс сваривания металлических заготовок в смесях с высоким содержанием углекислого газа. Дело в том, что при его соединении с кислородом воздуха образуется опасный для здоровья человека угарный газ, для защиты от которого оператор должен работать в специальной маске.
Таким образом, аргон и углекислота в сочетании с рядом активных добавок относятся к универсальным сварочным смесям газов, применяемым при работе с большинством марок чёрных и цветных металлов. Их сочетание наряду с высокой эффективностью использования отличается сравнительно низкой ценой.
Газы, дополняющие сварочные смеси
Благодаря таким сварочным газам есть возможность сделать более качественный шов, снизить разбрызгивание металла.
Для MIG MAG сварки кислород применяется в роли дополнительного компонента. С его помощью можно создать широкий шов, при этом проплавление металла незначительное.
Водород используется для соединения аустенитной нержавеющей стали. В процессе образуется широкий шов с глубоким проплавлением.
Азот предназначен больше для защиты сварного шва от ржавления, нежели в качестве защиты.
Очень важно правильно выбрать защитный газ. От этого напрямую зависит не только качество и геометрия сварного шва. Таким образом, проще будет исправить дефекты и произвести обработку шва в конце.
Принцип работы аргоновой TIG
Самая распространенная дуговая сварка W-электродом – в защитной среде аргона или его смеси. Аргон намного тяжелее воздуха, поэтому благополучно вытесняет его из зоны свариваемых деталей.
Существует три вида начала сварочной работы:
- Проведение иглой по металлу. .
- Бесконтактный розжиг.
В процессе сварки неплавящимся электродом организуется среда инертного газа, в которой зажигается электрическая дуга между вольфрамовым электродом и соединяемыми материалами. Установленное тепло расплавляет кромки соединяемых деталей и присадочной полосы. Присадочная полоса требуется не всегда: только если соединяемые детали невозможно соединить плотно.
По технологии, рабочая длина дуги должна быть короткой – 1,5 … 5 мм. В то же время не допускается касание электрода до свариваемых поверхностей.
Для начала TIG после зажигания дуги сварщик устанавливает правильное положение держателя, наклонив его до 15 0 от вертикали. При этом методе нужно работать двумя руками. Одной рукой производится работа горелкой, второй – подается присадочный пруток по мере необходимости.
Если присадочная полоса из низкоплавного материала, к примеру, алюминия, сварщик должен держать его на некотором расстоянии от дуги, но не убирать его из зоны инертного газа. Если такой пруток приблизить к дуге, он может расплавиться раньше, не вступив в контакт со сварочной ванной.
Для предотвращения трещин рекомендуют при завершении TIG-сварки ток электродуги снижать постепенно. Это позволит сварному шву затвердеть постепенно и равномерно.
Какой газ выбрать
Для защиты сварочной ванны от негативного влияния воздуха используют газ. Он улучшает сжигание проволоки и ее сцепление с обрабатываемой заготовкой, не вступая в реакцию с расплавленным металлом.
Различают два метода: MIG – сварка с защитой инертными газами: аргон, гелий; MAG – с активными газами: азот, кислород, оксид углерода.
Основные используемые газы: аргон (Ar), углекислый газ (CO2) – углекислота, азот (N2) и их смеси.
В среде углекислого газа сварка нержавейки полуавтоматом часто встречающийся вариант, как экономически более доступный. В этом случае шов получается корявым из-за сильного разбрызгивания металла.
При использовании аргона получается надежный шов, который имеет красивую форму. Дороговизна газа предусматривает его использование для изделий, где немаловажен внешний вид соединения. Сварка нержавейки полуавтоматом с аргоном больше всего используется в промышленности.
Каждый газ в чистом виде имеет положительные и отрицательные качества. Поэтому для более эффективного процесса используют газовые смеси в различных пропорциях. Исходя из сложности работ, необходимого результата и материальных затрат, выбирают ту или иную газовую смесь.
Наиболее употребляемый состав Ar+CO2 в пропорциях 98% на 2%, 95% на 5% соответственно. Без повышенных требований к виду шва, допускается увеличение углекислоты до 32%. Процентное соотношение зависит от толщины материала, его типа и других параметров. Сварка нержавейки в такой защитной смеси способствует хорошему растеканию расплавленного металла, улучшает структуру шва.
Иногда к аргону добавляют 1-5% кислорода – Ar+O2. Это способствует уменьшению пористости обрабатываемой поверхности и мелкокапельному переносу металла, стабилизирует дугу.
Что лучше: сварочная смесь или углекислота?
Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы. Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь. С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.
Преимущества применения газосмеси:
- облегчается струйный перенос электродной наплавки;
- швы получаются более пластичные;
- снижается риск образования пористости;
- ускоряется процесс расплавления металла;
- увеличивается прочность соединений;
- меньше дымление, выделяемые вещества удерживаются в зоне расплава;
- при неравномерной подаче присадочной проволоки сохраняется ритмичность работы;
- из-за минимизации разбрызгивания снижается расход электродов и проволоки.
Достоинства сварки в атмосфере углекислого газа:
- низкая стоимость;
- возможность варить в любом пространственном положении;
- хорошая проварка стыков.
Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.
Состав и области применения
Существует много видов газовых составов для MIG-MAG сварки. Наибольшее распространение получили смеси аргона и углекислого газа. Они широко используются как для работы с низкоуглеродистыми сталями, так и для высоколегированных (нержавеющих, жаропрочных и пр.) сортов стали.
Менее распространены смеси с добавлением кислорода, которые лучше работают при наличии ржавчины или загрязнений поверхности, но отличаются большим угаром металла и выделениями дыма.Кроме того, они не применимы для высоколегированных сортов стали.
Выбор режимов работы для MIG-MAG сварке позволяет обеспечить разные виды переноса расплавленного металла сварочной проволоки. Различают капельный перенос, когда расплавленный металл переходит вванну, вызывая образование брызг и неровностей сварного шва. При форсированных режимах MIG-MAG возможно образование струйного переноса расплавленного металла. При этом практически отсутствует разбрызгивание.
Наиболее популярные составы для сварки полуавтоматом (MIG-MAG):
- 98%Ar+2%CO2 — для высоколегированных (нержавеющих) сталей + на обычном полуавтомате оцинкованных деталей и сварки-пайки (MAG brazing) соединений медь-железо
- 92%Ar+8%CO2 — для тонких изделий из конструкционных сталей (1-5мм) + для скоростной сварки (линейная скорость до 2 м/мин на автомате или роботе) + для импульсной
- 80%Ar+20%CO2 — для наплавки обычных и высокопрочных конструкционных сталей + для полуавтоматической сварки высоколегированной (нержавеющей) стали с порошковой проволокой
- 75%Ar+ 25%CO2 — для магистральных трубопроводов и изделий из конструкционных сталей, где много вертикальных швов.
В некоторых случаях применяются также другие составы
Область применения
Защитный газ используется как мы уже говорили в механизированной сварки для защиты сварочной дуги и расплава от попадания газов из воздуха. Он используется 80% случаев использования полуавтоматической сварки, 20% это сварка самозащитой порошковой проволокой.
Область применения весьма широка так как данный процесс несложен и очень производителен. Полуавтоматом варят как тонкий металл в автосервисах, потому что ручной сваркой тонкий металл варить очень проблематично. Его легко прожечь. Так и используют на производстве металлоконструкций и крупных изделий.
Там ситуация обратная, швы протяженные, а толщина металла большая. Она применяется там, потому что этот процесс очень производительный и варить длинные швы и толстый металл ручной сваркой получается дорого и долго.
По большей части отличие здесь будут лишь в использовании самих аппаратов. В автосервисе как правило используются дешевые модели, а на производстве применяются дорогостоящая профессиональное оборудование с синергетической системы управления обеспечивающие высокую производительность.
Варианты настройки режимов сварочного аппарата
Для того чтобы качество сварного соединения было максимальным, а сам стык был предельно прочным и не мог разрушиться в скором времени после начала эксплуатации изделия, необходимо грамотно подобрать режимы сварочного аппарата.
При подборе параметров, в которых будет работать аппарат, необходимо опираться на следующие исходные данные:
- вариант исполнения соединения (угловое нижнее соединение, нижнее соединение встык либо вертикальное пространственное);
- толщина свариваемых деталей соединения (чем толще металл, тем выше параметры сварочного тока и сварочного напряжения);
- толщина проволоки (здесь также действует правило прямой зависимости сварочного тока и сварочного напряжения от толщины проволоки);
- наличие или отсутствие зазора при сварке деталей встык и величина такого зазора.
Если речь идет о сварке деталей, где толщина металла каждой детали составляет 0,8 мм, и которая осуществляется встык с нулевым зазором с использованием проволоки толщиной также 0,8 мм, то сварочный ток находится в диапазоне от 50 до 80 А, сварочное напряжение не может быть выше 16 В.
Все основные режимы сварки можно увидеть в таблице.
Можно ли самостоятельно смешивать газы?
Технически это возможно, для этого необходимо установить расходомеры-ротаметры на баллонах и по ним отрегулировать редуктором для полуавтомата подачу каждого газа в соответствии с требуемой пропорцией. На каждый литр основного газа будет расходоваться пропорциональная доля дополнительного.
На практике состав получаемой смеси будет нестабильным ввиду недостаточной точности расходомеров и неравномерного снижения давления в разных баллонах по мере расходования газа. Кроме того, сварочный редуктор будет периодически влиять на состав смеси. Какой еще способ применяется?
Надежный метод получения защитного сварочного газа
При работе с ответственными соединениями лучше применять готовые сварочные смеси в баллонах. Они готовятся на заводе по производству промышленных газов в специальных смесителях и равномерно перемешиваются.
Заправка газовых баллонов для сварки на таких предприятиях проводится с точным контролем количества и состава смеси. В этом случае состав смеси точен по пропорциям и постоянен во времени, в отличие от метода смешивания газов на рабочем месте с помощью редуктора для сварочной смеси. Состав смесей нормируется соответствующим ГОСТ и стабилен от партии к партии.
Источники питания
Источники постоянного тока:
- Универсальный сварочный выпрямитель ВДУ.
- Источники серии ВСВУ.
- Специализированный источник ТИР-300Д.
- Специализированные установки: УДГ-161, УДГ-501-1.
Источник переменного тока: трансформатор для ручной дуговой сварки.
Примерная стоимость аппаратов для TIG сварки на Яндекс.маркет
Инверторные источники питания:
- Источник ДСУ200АУ.
- Источник ДС200А.3.
Выбор проволоки
При сварке проволока является как присадкой, так и вместе с расплавленным металлом заполняет шов. Используются два вида: порошковая и сплошного сечения с очень низким содержанием углерода и высоким – кремния, устойчивая к окисляющей среде.
Диаметр варьируется от 0,13 до 6-10мм. Для применения в быту обычно берут проволоку сечением 0,6 и 0,8мм, для производства, где работают с мощными полуавтоматичными системами – свыше 1,0мм.
Для сварки нержавейки полуавтоматом без газа используют порошковую (самозащитную) проволоку. Она представляет собой тонкую стальную трубку, заполненную флюсом. При плавлении верхнего слоя, флюс освобождается, а также предохраняет сварочную зону от окисления. Образуется много шлака, которые надо удалять.
Сплошная проволока используется для проведения процесса в газовой среде и под флюсом, при этом она должна быть идентичной обрабатываемому металлу, т.е. из нержавейки. Лучше брать проволоку с немного большим содержанием легирующих элементов, из-за их выгорания при высоких температурах.
Некоторые марки сварочной проволоки:
- 0,8х20н9г7т – содержит хром, никель и марганец;
- 0,6х19н9т – высокого качества, устойчивая к коррозии;
- 0,4х19н11м3 – хром-никелевая с добавлением кремния и молибдена для стойкости к межкристаллической коррозии.
Для уменьшения образования брызг от расплавленного металла используется проволока меньшего диаметра, чем электрод. Шов получается аккуратным, но при этом увеличивается ее расход.
Некоторые аппараты снабжены кабель-шлангом, внутри которого для доставки к сварочной зоне проходят изолированно друг от друга проволока, газ, ток – так называемый сварочный рукав.
Подбор сварочной смеси для полуавтомата
Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.
Таблица выбора газосмеси для различных сплавов:
При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:
- НН-1 (полное название Helishield-Н3), в этой смеси концентрация гелия в пределах 30%, аргона не более 70%. газосмесь обеспечивает более эффективный нагрев, увеличивается скорость плавления металла, формируется ровная поверхность шва.
- НН-2 (международная маркировка Helishield-H5) – это в равных пропорциях смешанные два инертных газа: аргон и гелий. Универсальная смесь применяется для соединения черных и цветных заготовок практически любой толщины.
Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.
Какой газ используют для сварки полуавтоматом — критерии выбора
Поговорим о критериях выбора газа для полуавтоматической сварки более подробно. На выбор того или иного газа влияет несколько параметров таких как:
- марка материала изделия;
- ответственность соединения;
- экономические показатели.
В большой части марка изделия и определяет использование тех или иных газов или их смесей.
Инертные газы подходит как правило для любых видов сталей, цветных металлов и их сплавов. Применение инертных газов для низкоуглеродистых и низколегированных сталей неоправданно, так эти газа стоят очень дорого.
Для углеродистых, низкоуглеродистой, конструкционных сталей используется углекислота (углекислый газ ), а также смеси СО2 с аргоном, СО2 + аргон +гелий.
При сварки нержавеющих сталей (сталей аустенитного класса), к примеру всем известная «медицинская» сталь – 12Х18Н10Т и близкие с ней свариваются в смеси углекислоты и аргона.
Для сварки цветных металлов таких как алюминий, титан, медь чаще всего используется аргон либо в чистом виде, либо смесь с Не. В чистом виде Не используется редко так как он очень дорогой.
Медь можно сваривать в среде азота. Для цветных металлов не используются смеси содержащей СО2 и кислород.
Ниже приведём таблицу, где наглядно покажем применение тех или иных газов и их смесей для различных видов металлов сплавов.
Газ | Стали конструкционные (низкоуглеродистые) | Легированные стали (низко-, средне-, высоко-) | Титан, алюминий и их сплавы |
Со2 (углекислый газ) | Да | Да, с ограничениями | Нет |
Ar (Аргон) | Да (нецелесообразно) | Да | Да |
Не (Гелий) | Да (нецелесообразно) | Да | Да |
Аr + Со2 | Да | Да | Да |
Аr+О2 | Да | Да, с ограничениями | Нет |
Со2+О2 | Да | Да, с ограничениями | Нет |
Аr+Со2+О2 | Да | Да, с ограничениями | Нет |
Ar+Не | Да (нецелесообразно) | Да | Да |
Особенности процесса
Нержавеющая сталь устойчива к коррозионным поражениям, в результате чего ее прочность сохраняется достаточно длительное время. Однако легирование нержавейки, из-за чего она приобретает такое свойство, негативным образом сказывается на другом аспекте – процесс сварки становится существенно затрудненным из-за наличия в химическом составе этого металла легирующих химических элементов, в первую очередь, хрома. В результате снижается теплопроводность металла, что вызывает (при несоблюдении технологии) перегрев металла с последующим его прожогом, а также выгорание хрома, из-за чего снижается устойчивость детали к коррозии в месте сварного стыка.
Детали из нержавеющей стали имеют очень большой коэффициент теплового расширения, в результате чего сварной шов и металл вокруг него может подвергнуться растрескиванию. Избежать этого можно только одним способом: оставить широкий зазор между деталями.
У нержавеющей стали есть еще одна негативная особенность – она имеет очень высокое электрическое сопротивление, что вызывает постоянный перегрев электродов и, как результат, ухудшение качества шва. По этой причине опытные сварщики обрезают электроды настолько, насколько это возможно, чтобы успеть использовать их до момента перегрева.
Сложность орбитальной сварки и готовое решение для упрощения технологии
Орбитальная сварка используется для соединения труб и цилиндрических емкостей. Для них необходим высококачественный двусторонний провар, но полноценный доступ к изнаночной стороне шва затруднено.
В этом случае при малом диаметре заготовок их вращают перед сварочной горелкой, при большом диаметре или невозможности вращения на заготовки надевают специальную оснастку, по которой, как планета по орбите, движется сварочный автомат. При этой технологии часто используют подогрев заготовок.
Орбитальная сварка, как правило, проводится в чисто аргонной среде. Если же к соединению по техническим условиям предъявляются особые требования, как-то:
- скорость сварки;
- глубина проплава;
- конфигурация изнаночной стороны шва.
В аргон добавляют гелий или водород. Для особо сложных случаев сварки создают смеси из нескольких компонентов, каждый из которых дает свой эффект.
Специфика электродов
Наиболее применяемые электроды марок:
- ЭВЧ – чистый вольфрам. Используют только на переменном токе.
- ЭВЛ – вольфрам с окисью лантана.
- ЭВИ – вольфрам с окисью иттрия.
- ЭВТ – вольфрам с окисью тория.
Диаметр электрода выбирают по справочной таблице в зависимости от источника питания и марки электрода. Такой электрод имеет температуру плавления около 4000 0 С, поэтому его удобно использовать для сварки металлов, у которых плавление происходит при гораздо меньшей температуре.
Вольфрамовый электрод не выкидывают, а только зачищают и затачивают определенным образом.
Примерная стоимость вольфрамовых электродов на Яндекс.маркет
Подготовительные работы
Перед тем, как варить полуавтоматом нержавейку, требуется провести тщательную подготовку:
- Зачистить рабочие поверхности до блеска;
- обезжирить детали ацетоном или каким-либо органическим растворителем;
- при толщине металла более 4мм обработать торцы, чтобы между ними образовалось небольшое пространство для заполнения металлом;
- прогревая детали до100, убрать лишнюю влагу;
- нагреть металл до 200, чтобы снять внутреннее напряжение.
На производстве для удаления поверхностных загрязнений: нагара, следов от смазки, ржавчины детали и проволоку протравливают раствором соляной или серной кислоты. После этого промывают горячей и холодной водой и просушивают.
Расход газовой смеси при рабочем давлении 0,2 атмосферы с помощью редуктора устанавливается в пределах 6-12м3/мин. Несоблюдение этих показателей снижает качество шва.
Регулировка силы тока и напряжения зависят от мощности аппарата.
От этих параметров зависит глубина провара, длина дуги, форма шва. С увеличением силы тока – шире наплавленный шов, а глубина проварки уменьшается.
Некоторые настройки полуавтоматического сварочного аппарата:
Толщина металла, мм |
Диаметр проволоки, мм |
Зазор, при сварке деталей в стык, мм |
Сила тока, А |
Сварочное напряжение, В |
1 | 0,8 | 0 | 65 | 17 |
1,5 | 0,8 | 0 | 115 | 17 |
2 | 0,8 | 0,5 | 130 | 17,5 |
3 | 1 | 1 | 210 –215 | 18 |
4 | 1 – 1,2 | 1,5 – 2,5 | 220 – 280 | 20 |
5 | 1,2 | 2,5 | 190 – 300 | 21 |
6 | 1,2 | 2,5 | 300 | 22 |
К каждому аппарату дается таблица режимов сварки. Мастер выбирает режим работы полуавтомата, в зависимости от параметров сварки. Настроив аппарат, сварить на пробной заготовке. В случае необходимости коррегировать настройки.
Применение смесей
Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.
При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.
При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации. Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях. Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.
При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров. Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.
Сварочная смесь
Основным компонентом аргоновой сварки является аргон. Применяют его при работе с высоколегированными сталями. Используется данный газ, как в чистом виде, так и с добавками: углекислый газ, кислород, водород, гелий.
Типы смесей: аргон с углекислым газом, аргон с кислородом. Есть еще один вид, это углекислый газ с кислородом.
Состав аргона и кислорода подходят для работ с низкоуглеродистой сталью. Содержание кислорода придает пластичность шва и ведет к снижению пор. Легкий перенос струи электрода упрощает процесс.
Соединение аргона и кислорода применимо, для сварки легированной и низколегированной стали, что позволяет достичь отличного результата из-за малой пористости материала.
Сварочная смесь из аргона и водорода идет для соединения никелевых сплавов и нержавеющей стали.
Сварочная смесь аргона и гелия используют в сварке легких, медных, никелевых сплавов и алюминия.
Смешивание газов производят на заводах изготовителях или непосредственно на рабочих местах с помощью ротаметра.
Общее между углекислотой и сварочными смесями:
- Углекислота, как и сварочная смесь, служит защитой в процессе работы от окисления стыков металлических конструкций.
- Поставка углекислоты и сварочной смеси производится в сорокалитровых баллонах.
- Отличная герметичность и защищенность от коррозийных нарушений обеспечивает сохранность и безопасность баллонов. В зависимости от содержимого имеется маркировка на поверхности емкости.
- По категории механизации: полуавтоматическая, автоматическая сварка.
Алюминий — раскрываем секреты метода
Широко применяемый в аэрокосмической и приборостроительной отрасли алюминий имеет неприятное для сварки свойство: поверхность легкоплавкого (660оС) металла всегда покрыта тугоплавким (более 2200оС) окисным слоем, который не дает нормально сваривать детали.
После удаления этого слоя механическим или химическим методом он самопроизвольно восстанавливается, поскольку алюминий охотно окисляется кислородом, содержащимся в окружающем нас воздухе. Процесс многократно ускоряется при нагреве алюминия до температуры плавления.
Поэтому при сварке алюминиевых деталей необходимо надежно защитить рабочую зону от контакта с воздухом.
Наиболее широко в качестве сварочной смеси для сварки полуавтоматом применяется аргон. Используются также смеси с гелием для сварки полуавтоматом. Он защищает расплав от негативного воздействия кислорода, азота и водяных паров. Сварка ведется по технологии TIG или MIG, с использованием алюминиевой проволоки или прутка в качестве присадочного материала.
Особенности выполнения качественного шва
Движение горелкой совершается только вдоль оси шва, что дает более узкий и качественный шов.
Окончание сварки и заваривание кратера выполняется уменьшением величины тока. Ни в коем случае не прекращать сварку удлинением дуги.
Присадка и место сварки всегда должны находиться в среде защитного газа.
Правильное движение электрода:
- Горизонтальные швы выполняют справа налево, «от себя», «на себя». W-электрод направляют точно в угол. Присадочную проволоку подают впереди горелки.
- Вертикальные швы: электрод направляется точно в угол под углом. Присадка подается сверху.
- Потолочные швы ведут «на себя». Горелка расположена почти вертикально. Проволока подается перед горелкой.
Последовательность хода работы
Сварку нержавейки можно проводить тремя основными способами:
- С использованием короткой дуги – сварка полуавтоматом в газовой среде, особенно подходящая для работы с тонкими заготовками;
- со струйным переносом – используется порошковая проволока;
- импульсный метод – наиболее точный и эффективный, когда проволока подается в зону сварки импульсами в виде небольших капель.
Перед тем, как варить нержавейку полуавтоматом в углекислоте, надо учесть общие положения:
- Установить обратную полярность – в плюсовую клемму включить горелку, а в минусовую – заготовку;
- сила тока должна быть примерно на 20% ниже, чем для обычных сварочных работ;
- вылет, т.е. расстояние от наконечника до кончика проволоки, не более 12мм;
- для удаления водяных паров, газ проходит через осушитель, расположенный перед или после редуктора.
- аппарат заправить катушкой с проволокой. При помощи механизма протяжки регулируется ее натяжение.
Влияние на процесс
Защитный газ применяемые для сварки оказывают огромное влияние как на сам процесс, так и на результат — качество сварного соединения. Неправильный выбор газов приведёт либо к многочисленным дефектом, либо к ненужному удорожанию процесса.
Приведём несколько примеров:
Применение аргона или гелия для сварки металлоконструкций из Ст3пс. Сварное соединение получится качественным, но затраты необоснованно высокими. Или же другой пример: сварка титанового сплава ВТ9 в среде углекислого газа. В этом случае финансовые затраты будут минимальны, но соединение будет однозначно бракованным и скорее всего даст трещину еще до того, как сварщик завершит работу.
Самостоятельное смешивание газов
Теоретически смесь можно приготовить непосредственно на рабочем месте, на сварочных участках предусмотрены специальные посты с установкой ротаметров – аппаратов, контролирующих расход компонентов за единицу времени из каждого баллона. По показателям ротаметров с помощью редукторов регулируют состав газовой смеси, подаваемой к рабочим местам сварщиков.
При работе с несколькими баллонами одновременно состав сварочной смеси не будет идеальным. Делая газосмеси самостоятельно невозможно добиться точного процентного содержания компонентов до десятых. Обязательно увеличится расход газов и, соответственно, присадки.
Защитный сварочный газ – оптимальная смесь, используемая при термической обработке металлов. Готовые составы заказывают у специализированных поставщиков или непосредственно на заводах-изготовителях.
Смеси для работ плавящимся электродом или проволокой
Обработка металлов и сплавов с помощью плавящейся проволоки или электродов широко распространена. Для защиты компонентов и получения более ровного и качественного шва рекомендуется сварка в среде защитных газов.
На сегодняшний день разработаны и применяются следующие составы:
- Pureshield P31, известная под абревиатурой К-2 – универсальный состав, включающий в себя аргон и СО2, подходит для всех типов металла;
- Argoshield 5 или К-3.1 – помимо аргона и СО2 включает в себя кислород, предназначена для глубокой обработки сортовых сталей;
- Argoshield TC – К-3.2, содержащая больший процент углекислого газа и меньший аргона, подходит для автоматической и ручной сварки;
- Helishield HI – НП-1, предназначена для сварки, где важно отсутствие искривления металла в области шва, на основе гелия, аргона и кислорода;
- Helishield H7 – НП-2, с меньшим содержанием гелия, низким уровнем армирования во время сварки, подходит для разной толщины соединяемых деталей;
- Helishield H101 применяется для обработки массивных деталей, с толщиной шва свыше 9 мм, маркируется как НП-3.
Выбор подходящего состава должен осуществляться с учетом технических условий на обработку тех или иных металлов и сплавов. При отсутствии подобного рода документации обращайтесь за получением информации к специалистам.
Преимущества и недостатки газовой среды
Преимуществами при использовании газовой защиты является удешевление процесса так как не требуется использование дополнительных флюсов с газообразующими компонентами. Также это защищает соединение попадание шлаковых включений.
Основными недостатками является наличие громоздкого и не дешевого газового оборудования:
- газовый баллон;
- шланги;
- редукторы и ротаметры;
- смесители;
- газовый подогреватели и осушители
Применять его в условиях монтажа достаточно проблематично. Также условиях монтажа использование газовой защиты осложняется тем, что ее сдувает порывами ветра или сквозняком. А из-за этого образуются дефекты, и дуга горит нестабильно.
Безопасность — экологический взгляд на электродуговую технику
Для того, чтобы при сварочных работах не причинить вреда здоровью работников и окружающей среде, необходимо следовать следующим правилам:
- рабочее место должно быть оборудовано приточно-вытяжной вентиляцией;
- воздух, попадающий в вытяжку, обязательно должен очищаться фильтровальными установками до показателей чистоты, устанавливаемых экологическими стандартами;
- фильтрующие установки должны быть настроены именно на тот газ, который применяется в данный момент;
- газовое оборудование должно быть исправно и поверено, для того, чтобы не допускать перерасхода газа и выброса излишков в атмосферу;
- вокруг рабочей зону следует установить экраны, предотвращающие распространение вредного ультрафиолетового излучения;
- сварщик обязательно должен пользоваться средствами индивидуальной защиты: сварочная маска со адаптивным светофильтром, спилковые перчатки, плотная одежда и обувь, закрывающая все тело, респиратор или индивидуальный дыхательный аппарат с автономным воздухоснабжением.
Контроль качества сварочной смеси позволяет обеспечить безопасные для работника и окружающей среды условия работы. У каждого сотрудника должна быть своя роль в обеспечении производственной и экологической безопасности.
Соединение нержавейки с черной сталью
Сварку таких материалов ведут при постоянном токе. Положение проволоки – строго перпендикулярное к рабочей зоне.
В составе проволоки из нержавейки должны содержаться марганец, а также никель, например, марки ESAB OK, Autrod. Специальная переходная проволока наплавляет буферный слой, который и соединяет детали.
Приваривая сталь Ст40 к нержавейке, можно использовать проволоку 08Г2С. Это упрочняет шов двух разнородных металлов после остывания. Самое главное в процессе – это, чтобы нержавейка не стала сильно текучей, а черный металл не остался твердым. Шов делается как можно шире и максимально глубоким.
Достоинства и недостатки
Несомненные преимущества сварки нержавейки полуавтоматом:
- Высокая производительность сочетана с качественным соединением;
- незначительное выделение дыма, что сохраняет здоровье и окружающую среду;
- небольшое разбрызгивание металла, вследствие автоматической подачи проволоки;
- универсальность – можно сваривать различные по толщине заготовки, а также разнородные металлы.
Один существенный недостаток – громоздкий газовый баллон. Это дополнительные затраты на его приобретение и неудобное перемещение.
Распространение метода стало возможным с развитием технологий и автоматизации процессов. Применяется в основном в промышленности для крупномасштабного производства. Работа со сварочным полуавтоматом, хотя требует определенных знаний и умений, все же остается одним из популярных видов обработки металлов. Подробнее о том как работать сварочным полуавтоматом можете в нашей статье.
ли со статьей или есть что добавить?