Точность обработки деталей на станках: определение понятия, характеристики отклонений от заданных параметров
Отверстия в деталях приборов бывают цилиндрические (Рис. 64 а, в, г), ступенчатые (Рис. 64 б, д), конические и фасонные (Рис. 64, е).
Цилиндрические отверстия бывают гладкими (Рис. 64, а) и с канавкой (Рис. 64, в).
Под ступенчатыми подразумевают отверстия разных диаметров, расположенные на одной оси последовательно одно за другим.
Отверстия могут быть открытыми с двух сторон или с одной стороны – последние называются глухими (Рис. 64 г, д).
В деталях приборов чаще всего встречаются отверстия цилиндрические.
Читайте также: Элемент Калло Предисловие или кому адресована данная запись.
Данная запись предназначена в первую очередь для меня самого и тех 1,5 человека которым интересна наука, в частно
Обработка отверстий — одна из сложных и трудоемких технологических операций. Получить отверстие необходимой точности труднее, чем наружные поверхности тел вращения. Поэтому допуски отверстий шестого и седьмого квалитетов больше, чем допуски на наружные цилиндрические поверхности тех же размеров и квалитетов.
Обрабатывать отверстия можно снятием и без снятия стружки. Снимать стружку можно лезвийным и абразивным инструментом или абразивным порошком.
В зависимости от требуемых точности размера и шероховатости поверхности отверстия лезвийным инструментом можно выполнять сверление, зенкерование, развертывание, растачивание и протягивание;
Абразивным инструментом осуществляют шлифование, хонингование, суперфиниширование; абразивным порошком — доводку.
Обработка отверстий без снятия стружки производится калиброванием при помощи выглаживающих прошивок и шариков, а также раскатыванием.
Неточные отверстия (H12-H13 квалитетов) обрабатывают за одну операцию путем сверления или чернового растачивания. При образовании точных отверстий (H7-H8 квалитетов) обработка делится на черновую, чистовую и отделочную.
При черновой обработке удаляется основная величина припуска и обеспечивается точность относительного положения оси отверстия.
Чистовая обработка обеспечивает точность размеров, геометрической формы и относительного положения отверстия, а также точность положения и прямолинейность его оси.
Для повышения точности отверстия и уменьшения шероховатости поверхности применяют отделочную операцию.
Характеристика точности обработки
Разберемся в базовых терминах, которые характеризуют понятие. Первый из них – это номинальный размер. Это параметр длины, ширины, высоты указанный в начальной документации. На схеме, по которой идет производство. Он обычно заявляется с отступлениями, но они не считаются его частью. Так, при значениях в 35-05мм номинальным размером будет только первое. Соответственно, 25 миллиметров.
А вот действительным уже называют размер, полученный после процесса производства. Он выявляется с помощью измерения получившегося метиза. И для выяснения необходимости дальнейшей доработки, нужно обращаться к еще одному понятию — предельный размер. Он уже указывается, как номинальное значение с отклонением. В нашем примере – это 34.5 мм. В большую сторону, 35.5 мм. Диапазон между этими параметрами считается допуском.
Но допустимые изменения также могут быть верхними и нижними. Разность между предельными и номинальным размером определяется в большую сторону либо в меньшую, исходя из вектора предела. Так, при 35-05мм у нас 35 – 34.5 = 0.5, получается положительный знак, верхний предел. А при 35+0.5 мм, выходит 35 – 35.5 = — 0.5, наблюдается нижний.
Сверление, зенкерование, развертывание
— один из распространенных способов получения глухих и сквозных цилиндрических отверстий в сплошном материале с точностью H12-H13 квалитетов и шероховатостью поверхности Rr20 — Rr80.
Режущим инструментом здесь служит сверло, которое дает возможность получать отверстия в сплошном материале и увеличивать диаметр ранее полученного отверстия (рассверливание). Главное движение при сверлении — вращательное, движение подачи поступательное.
Спиральное сверло (Рис. 65, а) — инструмент цилиндрической формы, на поверхности которого имеются две винтовые канавки, образующие режущие кромки. Сверло состоит из рабочей части и хвостовика, соединенных между собой шейкой. Хвостовик служит для закрепления сверла в патроне или шпинделе станка. Хвостовики бывают конические и цилиндрические.
Рабочая часть сверла выполняет основную работу резания. Режущие кромки образуются пересечением передних поверхностей спиральных канавок с торцевыми поверхностями сверла.
Поперечная кромка (перемычка) образуется пересечением двух задних (торцевых) поверхностей сверла. Наличие ее отрицательно влияет на процесс резания, затрудняя проникновение сверла в металл.
Основным углом, определяющим форму режущей кромки сверла является угол при вершине 2φ. Он оказывает влияние на правильность работы и производительность сверла. Величина угла при вершине сверла 2φ зависит от свойств обрабатываемого материала: например для стали 2φ = 116-120°, а для латуни и алюминиевых сплавов 2φ = 130-140°.
Сопряжение
Еще один важный аспект. Точность обработки поверхностей детали демонстрирует свою важность как раз в сопрягаемых элементах — тех, что соприкасаются друг с другом поверхностями на определенной площади. Помимо того, что они обязаны быть взаимозаменяемыми, стоит понимать, что сопряжение требует идеально подобранной поверхности. В противном случае появится повышенное трение, неучтенный расход энергии, ведь метизы будут тормозить ход. А также сильно пострадает эксплуатационный срок. При интенсивной работе особенно. В этом ракурсе срок службе может быть снижен в десятки раз. Что опять же, ударит по экономике предприятия.
Как видно, практически все изменения в первую очередь наносят урон экономической составляющей. Корректное соблюдение параметров – это отличный способ сократить издержки. Да и стоит понимать, что сильные отклонения – это шанс получить санкции от контролирующих органов, в частности, Роспотребнадзора. Ведь полученная продукция не будет соответствовать заявленной по начальной сделке. А это скажется в форме нарушений прав конечного потребителя.
Взаимозаменяемость деталей
При современных темпах производства на сбор конструкций отводятся максимально урезанные сроки. Машины работают в активном ритме. Это характерно для сбора велосипедных, мотоконструкций, машиностроения, двигателей и во множестве иных областей. И для проведения подобных процессов нужно огромное внимание уделить тому, подходят ли метизы по уровню квалитета. В противном случае это скажется на скорости. Останавливать производственный процесс для подгонки изделий никому не захочется.
И по итогу, точность обработки детали – это:
- • Возможность удешевить финальный и смежный этап сбора конструкций.
- • Способ снизить конечную себестоимость продукции.
- • Метод повышения скорости деятельности в десятки раз.
- • Экономия человеческих ресурсов с помощью уменьшения работы, направленной на подгонку.
Также этот аспект исключительно важен в вопросах ремонта. Ведь взаимозаменяемость тут тоже становится центральным фактором. Если сломанную деталь невозможно заменить на новую без подгонки, значит:
- • Процедура окажется значительно дольше.
- • Стоимость работы вырастет в разы.
- • Деталь теоретически может настолько отклониться, что даже после подгонки не встанет нормально.
- • Процесс не сможет провести непрофессионал. А по статистике, очень часто замену производит владелец самостоятельно. И если такой возможности у него не будет, то он крайне неохотно будет приобретать подобный товар.
Причины неточностей
Мы уже частично упоминали эти факторы. Но давайте скомпилируем полученные знания. Неточность зачастую возникает:
- • При ошибках, халатном отношении сотрудника.
- • Ввиду недостатка квалификации работника. Он просто не способен работать с данным классом.
- • Из-за серьезных погрешностей станка. Обычно, если на нем пытаются выполнить более тонкую работу, чем та, на которую он рассчитан.
- • При банальной экономии на расходниках.
- • Ошибки в начальной документации, некорректный чертеж.
- • Неправильные условия производства, нарушен температурный режим, уровень влажности.
Посадка изделий
Это способ соединения метизов. Он характеризуется как наличием свободы движения, так и ее отсутствием. Все зависит от того, насколько габариты двух составных частей соответствуют друг другу. Обычно подразумевается один метиз, который помещается в паз или слот.
Посмотрим, как у нас будет меняться посадка, если изначальные размеры не соответствуют объектам. То есть, появляется зазор или натяг. И каким образом это может сказать на дальнейшем процессе сбора.
Посадка с зазором
В части случаев это строго необходимое требование. Как вариант, шпиндель на подшипниках во фрезерном станке. Тут зазор положен по регламенту. Но небольшой. А вот при размещении колец на отправке в том же агрегате, положен серьезная свобода. И если поменять их местами, то шпиндель не сможет нормально работать на скорости. А кольца не дадут ход, слишком туго затянувшись.
Получается, что, отклоняясь от норм зазора, проблемы становятся еще неприятнее, чем при обычном выходе метиза за пределы допуска.
Посадка с натягом
Обратная ситуация. Тут значение расхождений не так важно, при работе ощущается гораздо менее явно. Но есть свой нюанс. Ведь если натяг в итоге получится слишком крупным, то поместить изделие в паз будет невозможно. Подогнать пару десятых миллиметра – это вполне реализуемо даже без специальных приспособлений. А вот справиться с расхождением в 0.7-1 мм, просто нереально. Придется заново снимать стружку, иначе оба объекта при прессовке деформируются или треснут. Зависит от материала, который был задействован при их создании.
Точность обрабатываемых деталей по классам
Мы уже поняли, насколько важно, чтобы вышедшее из-под станка изделие соответствовало параметрам, заявленным чертежом. Но эта значимость в различных случаях отличается. Легко понять, что черенок от граблей не обязан быть подходящим по размеру под стальную часть до сотой Мкм. И при этом составляющие станка должны быть очень точно подобраны, не выходить за размерные рамки. А ювелирные весы имеют и еще более высокие требования. Все подстраивается под конечную цель финального прибора. И в зависимости от этого фактора, принято выявлять классы. И их сейчас по современным регламентам ровной десять штук. И к высокоточным относится ровно половина — с первого по пятый. К диапазону среднего уровня принадлежат шестой и седьмой класс. А оставшиеся три считаются неточными.
Перед установкой настроек для работы важно не только обращать внимание на схему, точные значения, но и класс. Хотя этот фактор зачастую учитывается при формировании чертежа. Но уточнить на всякий случай все же стоит. То есть, получается новый алгоритм, как определить точность обработки детали на станке. Не только указанные диапазоны изменений в чертеже имеют значение, но и характеристика по классу.
Применение по областям
Указанные выше группы используются повсеместно. Сейчас чуть меньше, ведь появились и иные ориентиры. А вот еще 25-30 лет назад это были главные факторы, на которые все ориентировались при определении отклонений.
Посмотрим, где сейчас используются классы:
- • 1 – это высокоточные и измерительные приборы. Обычно в сфере работают только лучшие специалисты с высокой квалификацией.
- • 2-3 – зачастую машиностроение и создание различных станков.
- • 4-5 – техника для сельского хозяйства, крупная строительная.
- • Грубые метизы. В основном литые.
В чем суть операции рассверливания?
Обработка больших отверстий предполагает высокое усилие подачи, а это сильно утомляет станочника. Иногда при использовании сверл, подходящих для такого вида работ, попросту не хватает мощности станка. Рациональный выход в этой ситуации — обработка отверстия несколькими сверлами, имеющими разный диаметр. Причем длина поперечной кромки одного инструмента должна быть меньше диаметра другого. Поперечная кромка не принимает участия в резании, следовательно, усилие, которое требуется для подачи, уменьшается. Это помогает сократить риск увода сверла.
Диаметр второго инструмента соответствует половине первого. Только так можно равномерно распределить силы, возникающие при подаче двух сверл и обеспечить оптимальные условия их износа.
Рассверливание — метод механообработки, позволяющий получить точные отверстия и минимизировать увод инструмента от оси заготовки. Режимы резания для подобных операций рассчитываются так же, как при сверлении.
Таблица допусков
При работе с деревом обычно заявленные требования становятся ниже, чем для стали. Ведь этот материал подразумевает наличие различных неровностей после процедур, шероховатостей, деформаций по годовым кольцам или возможных микротрещин. Диапазоны у них более щадящие. Да и доработка проводится легче. При этом существует определенный запас для натяга. Деформация древесных волокон происходит проще, чем стальных элементов.
В данной таблице приведены значения исключительно для древесного материала, шпона, массива. Для финальной сверки используются различные измерительные инструменты. Линейки, штангенциркули и обычные метры.
ли со статьей или есть что добавить?